The effects of necrotic lesion size and orientation of the femoral component on stress alterations in the proximal femur in hip resurfacing - a finite element simulation
نویسندگان
چکیده
BACKGROUND Due to the advantages of its bone-conserving nature, hip resurface arthroplasty (HRA) has recently gained the interest of orthopedic surgeons for the treatment of young and active patients who have osteonerosis of the femoral head. However, in long-term follow-up studies after HRA, narrowing of the femoral neck has often been found, which may lead to fracture. This phenomenon has been attributed to the stress alteration (stress shielding). Studies addressing the effects of necrotic size and the orientation of the implant on stress alterations are lacking. METHODS Computed tomography images of a standard composite femur were used to create a three-dimensional finite-element (FE) intact femur model. Based on the intact model, FE models simulating four different levels of necrotic regions (0°, 60°, 100°, 115°) and three different implant insertion angles (varus 10°, neutral, valgus 10°) were created. The von Mises stress distributions and the displacement of the stem tip of each model were analyzed and compared for loading conditions that simulated a single-legged stance. RESULTS Stress shielding occurred at the femoral neck after HRA. More severe stress shielding and an increased displacement of the stem tip were found for femoral heads that had a wider necrotic lesion. From a biomechanics perspective, the results were consistent with clinical evidence of femoral neck narrowing after HRA. In addition, a varus orientation of the implant resulted in a larger displacement of the stem tip, which could lead to an increased risk of implant loosening. CONCLUSIONS A femoral head with a wide necrotic lesion combined with a varus orientation of the prosthesis increases the risk of femoral neck narrowing and implant loosening following HRA.
منابع مشابه
An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کاملDesign Optimization of Hip Resurfacing Prosthesis Using Finite Element Analysis
Hip resurfacing is an alternative to total hip arthroplasty for the young and active patient likely to outlive traditional means of hip joint replacement. To optimize design on the hip resurfacing prosthetic stress profile in the proximal femur after hip resurfacing. The acetabular cup is implanted in much the same fashion as an uncemented total hip arthroplasty, however, implantation of the fe...
متن کاملProsthesis design and stress profile after hip resurfacing: a finite element analysis.
PURPOSE To evaluate the effect of prosthesis design on stress profile in the proximal femur after hip resurfacing. METHODS The von Mises stress profile of the native femur was simulated and compared with that of resurfaced femurs using various prosthetic materials (titanium, cobalt-chrome, ceramic), stem lengths (normal, half, short, and no stem), and femoral head coverage (shell size) [260 d...
متن کاملEffects of Hip Geometry on Fracture Patterns of Proximal Femur
Background: Some studies have previously shown that geometry of proximal femur can affect the probability of fracture and type of fracture. It happens since the geometry of the proximal femur determines how a force is applied to its different parts. In this study, we have compared proximal femur’s geometric characteristics in femoral neck (FNF), intertrochanteric (ITF) and Subtrochanteric (ST...
متن کاملFinite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions
Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014